亚洲а∨天堂男人无码,成人国产亚洲精品a区天堂,久久九九有精品国产,国产区女主播在线观看,日产欧美国产日韩精品,欧美乱妇高清免费96欧美乱妇高清,国产成人亚洲精品无码青app,亚洲国产欧美一区点击进入
熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購(gòu)物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > Recreating embryonic conditions at break sites can help bone

Recreating embryonic conditions at break sites can help bone

 Date:

June 5, 2019
Source:
University of Illinois at Chicago
Summary:

Researchers have developed a unique technique that uses stem cells and flexible implantable bone-stabilizing plates to help speed the healing of large breaks or defects.

Researchers at the University of Illinois at Chicago and the University of Pennsylvania have developed a unique technique that uses stem cells and flexible implantable bone-stabilizing plates to help speed the healing of large breaks or defects.

The technique allows the stem cells applied to break sites to experience some mechanical stress, as they do in developing embryos. These forces may help encourage stem cells to differentiate into cartilage and bone, as well as encourage other cells in the bone to regenerate.

Their findings are reported in the journal Science Translational Medicine.

Stem cells need environmental cues to differentiate into cells that make up unique tissues. Stem cells that give rise to bone and cartilage are subject to mechanical forces during development and healing, explained Eben Alsberg, the Richard and Loan Hill Professor of Bioengineering and Orthopaedics at the University of Illinois at Chicago and a senior author on the paper.

When a bone heals, stem cells in the marrow near the break site first become cartilage cells and later bone cells -- ultimately knitting together the break. When there are large gaps between broken or deformed bones, applying additional stem cells to break sites can help bones heal faster by either actively participating in the regenerative process or stimulating bone formation by neighboring cells.

But to use stem cells for bone regeneration, they need to be delivered to the defect site and differentiate appropriately to stimulate repair.

Alsberg and colleagues developed a unique preparation of the cells that can be handled and manipulated easily for implantation and that supports the cellular differentiation events that occur in embryonic bone development.

In Alsberg's preparation, stem cells are cultured so that they link to each other to form either sheets or plugs. The preparation also contains gelatin microparticles loaded with growth factors that help the stem cells differentiate. These sheets or plugs can be manipulated and implanted and reduce the tendency for cells to drift away. Alsberg calls these materials "condensates."

In previous studies, Alsberg and colleagues used condensates in a rodent model to help heal bone defects in the skull. They saw that the condensates stayed in place and were able to improve the rate and extent of bone regeneration.

More recently, Alsberg teamed up with Joel Boerckel, assistant professor of orthopedic surgery and bioengineering at Penn Medicine and a senior author on the paper, to take the idea one step further.

Boerckel has developed a unique, flexible "fixator." Fixators, as they are known to orthopedic surgeons, usually are stiff metal plates or bars that are used to stabilize bones at break sites. These kinds of fixators minimize the amount of mechanical stress breaks experience as they are healing.

Boerckel's flexible fixator would allow the cells in Alsberg's condensates to experience the compressive forces that are critical for stimulating enhanced cartilage and bone formation.

The researchers used a rat model to determine how the mechanical forces present within bone defects affected the ability of condensates to contribute to bone regeneration. When the researchers used condensate sheets together with a flexible fixator in rats with a defect in their femur, they saw that there was enhanced healing and the bones had better mechanical function compared with control rats that received condensates and stiff, traditional fixators.

"Devices and techniques we develop out of this research could also influence the way we implement physical therapy after injury," Boerckel said. "Our findings support the emerging paradigm of 'regenerative rehabilitation,' a concept that marries principles from physical therapy and regenerative medicine. Our goals are to understand how mechanical stimuli influence cell behavior to better impact patient outcomes without additional drugs or devices."

Anna McDermott, Devon Mason and Joseph Collins of the University of Pennsylvania; Samuel Herberg and Rui Tang of Case Western Reserve University; Hope Pearson and James Dawahare of the University of Notre Dame; Amit Patwa and Mark Grinstaff of Boston University, and Daniel Kelly of Trinity College Dublin are co-authors on the paper.

This research was supported by the Naughton Foundation; the Indiana Clinical and Translational Sciences Institute grant 16SDG31230034; the National Science Foundation grant 1435467; National Institute of Arthritis and Musculoskeletal and Skin Diseases grants R01 AR066193, R01 AR063194, and R01 AR069564; National Institute of Biomedical Imaging & Bioengineering grant R01 EB023907; National Institute of Dental and Craniofacial Research grant 5F32DE024712; National Heart, Lung, and Blood Institute award T3HL134622, and Ohio Biomedical Research Commercialization Program award TECG20150782.

Story Source:

Materials provided by University of Illinois at ChicagoNote: Content may be edited for style and length.


Journal Reference:

  1. Anna M. McDermott, Samuel Herberg, Devon E. Mason, Joseph M. Collins, Hope B. Pearson, James H. Dawahare, Rui Tang, Amit N. Patwa, Mark W. Grinstaff, Daniel J. Kelly, Eben Alsberg, Joel D. Boerckel. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regenerationScience Translational Medicine, June 5, 2019; DOI: 10.1126/scitranslmed.aav7756
  2.  
主站蜘蛛池模板: 国产色视频网站免费 欧美成人精品高清在线播放 无码国产精品一区二区vr 国产亚洲精品欧洲在线视频 国产高清在线精品二区 国产麻豆精品乱码一区 在线观看国产网址你懂的 成人片黄网站色大片免费观看cn 亚洲国产婷婷六月丁香 日韩精品一区二区av在线 色欲天天天综合网免费 宅男午夜成年影视在线观看 伊人久久大香线蕉avapp下载 九九视频免费精品视频 综合成人亚洲网友偷自拍 免费国产乱理伦片在线观看 一区一区三区四区产品动漫 国产精品天干天干在线综合 好男人免费影院www神马 亚洲已满18点击进入在线看片 欧美午夜成人片在线观看 51久久国产露脸精品国产 国产成人免费高清直播 欧美兽交xxxx×视频 国产国产人免费视频成69 亚洲精品人成网线在线播放va 人妻少妇heyzo无码专区 久久久久久一区国产精品 av无码免费无禁网站 中文无码字幕一区到五区免费 国产高清精品综合在线网址| 国产精品久久久久不卡绿巨人| 亚洲熟女乱综合一区二区在线| 色一情一伦一区二区三| 国产开嫩苞视频在线观看| 中文字幕一本性无码| 国产精品综合色区小说| 97国产在线看片免费人成视频| 大狠狠大臿蕉香蕉大视频| 果冻传媒董小宛视频一区| 蜜臀亚洲精品国产aⅴ综合第一|