亚洲а∨天堂男人无码,成人国产亚洲精品a区天堂,久久九九有精品国产,国产区女主播在线观看,日产欧美国产日韩精品,欧美乱妇高清免费96欧美乱妇高清,国产成人亚洲精品无码青app,亚洲国产欧美一区点击进入
熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > Cancer cells are quick-change artists adapting to their envi

Cancer cells are quick-change artists adapting to their envi

 

Inherent cancer stem cell plasticity uncovered

Date:
May 24, 2019
Source:
Luxembourg Institute of Health
Summary:

New research shows that cancer cells of glioblastomas -- conspicuously aggressive solid brain tumors -- manifest developmental plasticity and their phenotypic characteristics are less constrained than believed.

Until now, researchers have assumed that the growth of solid tumors originates from cancer stem cells characterized by specific surface markers, which develop in a fixed, hierarchical order. Accordingly, such cancer stem cells are responsible for tumor progression and produce specific types of more differentiated cancer cells whose fates are predetermined.

In a joint interdisciplinary project led by the Luxembourg Institute of Health (LIH), researchers now show that cancer cells of glioblastomas -- conspicuously aggressive solid brain tumors -- manifest developmental plasticity and their phenotypic characteristics are less constrained than believed. Cancer stem cells, including their progeny, are able to adapt to environmental conditions and undergo reversible transformations into various cell types, thereby altering their surface structures. The results imply that novel therapeutic approaches, which target specific surface structures of cancer stem cells, will be of limited utility. The research team has published its findings in Nature Communications in April 2019.

Glioblastomas are the most common malignant brain tumors. Because of their rapid growth, the prognosis for those affected is usually dismal. Many patients hold out hopes for novel therapeutic approaches, which utilize drug-bound antibodies directed against specific markers present on the surface of a subpopulation of immature glioblastoma cells. These antibody-drug conjugates bind to the surface, are then internalized and kill the cancer stem cells.

Remarkable cell state transitions

However, results now published in the journal Nature Communications suggest that this approach may be misdirected: 'We exposed cancer cells in the laboratory to certain stressors, such as drug treatment or oxygen deficiency', explains Dr. Anna Golebiewska, Junior Principal Investigator at the NORLUX Neuro-Oncology Laboratory in LIH's Department of Oncology and co-first author of the study. 'We were able to show that glioblastoma cells react flexibly to such stress factors and simply transform themselves at any time into cell types with a different set of surface markers.' This plasticity allows the cells to adapt to their microenvironment and reach a favorable environment-specific heterogeneity that enables them to sustain and grow, and mostly likely to escape also therapeutic attacks.

The team of scientists from Luxembourg, Norway and Germany, led by Prof. Simone P. Niclou at LIH, proposes that neoplastic cells of other tumor types may be also less constrained by defined hierarchical principles, but rather can adapt their characteristics to the prevailing environmental conditions. 'The same phenomenon has been observed in breast and skin cancer', says Dr. Golebiewska. 'This observation predicts that cancer therapies specifically directed against cancer stem cell markers may not be successful in patients.'

The new findings could help to optimize future standard treatments. In laboratory experiments, the researchers were able to show that environmental factors, such as lack of oxygen in combination with signals from the tumor microenvironment can induce cancer cells to modify their characteristics. This microenvironment, the immediate surrounding of the cancer, comprises cells and molecules that influence the growth of the tumor. 'Once we understand exactly what causes the plasticity of tumor cells, we can devise combination therapies which target the signals underlying plasticity and thereby improve the therapeutic impact', underlines Dr. Golebiewska.

Collaboration and funding

The study is a collaborative work between the NORLUX Neuro-Oncology Laboratory and other research units and platforms at LIH. The researchers from LIH also worked in close collaboration with their long-term national partners to whom they are tightly connected through transversal research programmes: the Luxembourg Centre for Systems Biomedicine at the University of Luxembourg and the Department of Neurosurgery of the Centre Hospitalier de Luxembourg. Moreover, the project was carried out with international partners from the Technische Universität Dresden, Germany, the University of Heidelberg, Germany, and the University of Bergen, Norway. This joint undertaking of different research and clinical players gives a truly interdisciplinary dimension to the study.

The study is a major part of the PhD thesis of Dr Anne Dirkse, co-first author on the publication, who was supported by an AFR PhD grant (#5778172 -- PhD2013-1/BM) from the Luxembourg National Research Fund (FNR) and a training grant from the Fondation du Pélican de Mie et Pierre Hippert-Faber (Fondation de Luxembourg). Furthermore, the work was supported by funding from LIH, Sächsisches Staatsministerium für Wissenschaft und Kunst (SMWK), Deutsche Krebshilfe and Deutsche Forschungsgemeinschaft (DFG).

Story Source:

Materials provided by Luxembourg Institute of HealthNote: Content may be edited for style and length.


Journal Reference:

  1. Anne Dirkse, Anna Golebiewska, Thomas Buder, Petr V. Nazarov, Arnaud Muller, Suresh Poovathingal, Nicolaas H. C. Brons, Sonia Leite, Nicolas Sauvageot, Dzjemma Sarkisjan, Mathieu Seyfrid, Sabrina Fritah, Daniel Stieber, Alessandro Michelucci, Frank Hertel, Christel Herold-Mende, Francisco Azuaje, Alexander Skupin, Rolf Bjerkvig, Andreas Deutsch, Anja Voss-Böhme, Simone P. Niclou. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironmentNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-09853-z
主站蜘蛛池模板: av天堂亚洲区无码小次郎 国内自拍视频一区二区三区 国产精品va无码二区 丰满人妻一区二区三区视频53 日韩人妻不卡一区二区三区 内射中出无码护士在线 99热久久这里只精品国产www 亚洲欧美成人精品香蕉网 亚洲精品熟女国产 无码福利日韩神码福利片 久久国产热精品波多野结衣av 久久精品娱乐亚洲领先 国产佗精品一区二区三区 国产精品无码久久久久久久久久 亚洲一区二区三区四区五区黄 国产亚洲日韩网曝欧美台湾 熟妇人妻无码中文字幕 国产va免费精品高清在线 免费无码又爽又刺激高潮的漫画 久久人妻少妇偷人精品综合桃色 99久久久无码国产精品免费砚床 精品国产成人网站一区在线 一本久道综合在线无码人妻 人妻熟女一区二区aⅴ图片 男女性动态激烈动全过程 精品玖玖玖视频在线观看 99久久九九社区精品 无码内射成人免费喷射 国产av亚洲精品久久久久 亚洲精品无码久久久久app 久久男人av资源网站| 国产亚洲精品久久av| 天天摸日日添狠狠添婷婷| 免费无码影视在线观看mov | 色综合天天综合网国产| 欧美性做爰片免费视频看| 免费精品人在线二线三线区别 | 丰满少妇被粗大猛烈进人高清| 亚洲精品久久久久午夜福利| 国产日韩欧美久久久精品图片| 亚洲日韩在线a视频在线观看|